//
archives

gene regulation

This tag is associated with 6 posts

CRISPR computers: how to program a cell

Inside every cell in your body, a complex network of signals are constantly being sent, received, interpreted and acted upon. These signals tell the cell how and when to perform its particular specialised task, in concert with all the other cells surrounding it. Understanding how these networks operate is critical to developing a full understanding of biological systems, but … Continue reading

Pinch by pinch

What does your genome have in common with a Michelin-starred chef? Find out in this article by Yale Michaels, a DPhil student in Tudor Fulga’s lab, written for the MRC Max Perutz Science Writing Award.  You have always dreamt of becoming chef de cuisine at a Michelin-starred restaurant. You started sweeping floors and peeling potatoes and have worked … Continue reading

How super is a super-enhancer?

Over the past few years, a fierce debate has raged on amongst geneticists about whether the enticingly named ‘super-enhancer’, a region of the DNA proposed to have essential functions in controlling how a cell works, actually exists. Last month, a study by a team of scientists in Doug Higgs’ lab at the WIMM finally took … Continue reading

DNA origami: how do you fold a genome?

Inside each of the cells in your body is an entire instruction manual containing all the information required to build an entire human being. Yet it isn’t just the words in that manual that are important: you have to read the right chapters, and in the right order. To build one particular part of a … Continue reading

Beyond the double helix

So, DNA. It’s a code; it’s made up of four letters, and it’s essential for life. Scientists worked out the sequence of the entire human genome about a decade ago (that’s all the DNA code in your body) so what else is there to know? A lot, says Barbara Xella – it turns out DNA … Continue reading

Micro by name; mighty in nature

Each individual cell in our body has its own specific set of instructions that allow it to execute a particular task – like ensuring a red blood cell can carry oxygen, and a nerve cell can detect pain. By definition, these sets of instructions must be wildly different between various cell types – but how … Continue reading

Enter your email address to follow the WIMM blog and receive notifications of new posts by email.

Monthly archive

Follow the MRC WIMM on Twitter